
AAF Overview 1 10 September 2001

Enabling better
media workflows

An overview of the Advanced Authoring Format
by the AAF Association

Advanced Authoring Format (AAF) is an industry-driven, open standard for multimedia authoring and post
production, created by the AAF Association. It enables content creators to easily exchange digital media,
video and audio, and metadata across platforms and between applications. It simplifies project management,
saves time and preserves valuable metadata that was often lost in the past during media transfers.

Advanced
Authoring
Format

AAF improves workflow in post production and authoring where

individual systems and applications have become isolated by

incompatibilities: so limiting their interaction. Typically, video and

audio always have safe passage but detail about the material

and edit decisions is often lost.

AAF allows the passage of full information. Not just the video,

audio and text material—termed essence—but also the metadata

with the decisions about how material has been manipulated

(cuts, DVE, color correction etc.) and assembled. The metadata

also passes on existing, original information such as timecode

or edgecode, ownership, previous editing etc. that helps any later

versioning.

Editing is about the assembly of material for passive viewing.

Authoring also refers material assembly but the product is

interactive—as seen in CD-ROMs, DVDs, Internet and interactive

television. In either case it is where metadata is most prevalent

and where the flexibility to alter information is vital. Other sectors

of the production chain have different requirements, and other

file formats exist to handle these efficiently. AAF interfaces with

these but does not replace them: each does the best job in its

own area.

AAF is not only compression-independent, it is also platform-

independent: working on all the most widely used operating

systems. It is broadly accepted and supported from key industry

companies and organizations showing the high level of interest,

importance and value attached to the AAF movement (see

“Membership”). Mark Wildig, Smoke & Mirrors managing

director, made this very clear:

“It‘s so important for the future of our industry to have the
seamless interchange of file formats—and I‘d love to see AAF
used as a delivery format for the TV stations. AAF will become a
key technology for the post production industry. It enables the
interchange and archiving of all the elements involved in the
structure of complex layered material. So those key elements
will always be available to be picked apart and worked on across
different systems, and delivered to different media.”

The AAF Software Developer’s Kit (SDK) Version 1.0 was officially

released in April 2001, after members of the AAF Association

performed extensive beta testing. It can be obtained from

www.aafassociation.org, where you can either download the

standard version of the SDK as open source, or register as an

adopter to become an AAF developer.

Since that time, numerous companies have made contributions

to the AAF technology. As a result, the Association is planning a

maintenance release which will incorporate many of these

contributions. In addition, sample files created by AAF Developer

Jim Trainor are now available to AAF members.

Metadata peaks in the post production/authoring phase

Preparation

M
et

ad
at

a

Production Post Production Distribution & Interaction

Advanced
Authoring
Format

AAF Overview 2 10 September 2001

Essence (video) Essence (audio)

Label

Wrapper

Metadata (edge number)

22453;4 Address
TO:

FROM:

CON
TEN

TS:

met
ada

ta_
edg

enu
m;I

D=…

ess
enc

e_v
ide

o;I
D=…

ess
enc

e_a
udi

o;I
D=…

Quick Tour

The principle of AAF is quite straightforward and briefly explained

here in this quick tour. Deeper detail follows. AAF takes program

content, the essence and metadata, places it into a wrapper (a

file format) adds an address and attaches a label on the outside

giving a basic description of what’s inside.

The AAF file holds essence and metadata in a wrapper
with an address and label

Then another AAF-compatible system or application can look at

the label and display information about what’s inside. It can open

the wrapper and, if it has the right application, work with its

contents. Then information about any work done by the

application, say to re-size the video, is added to the metadata

which continues as a total record about its related essence. Any

modified or new video and any other new essence along with

modified metadata are inserted into the existing file.

AAF-compliant applications are able to exchange files

This procedure is very analogous to e-mails and their attachments.

You can read the normal text and see the file name of the

attachment. If you have the required application (say Acrobat for

pdf files) you can open the attached file. If you don’t have the

application you are still able to forward the file—NOT removing

any information but the record of your forwarding is added—

plus any comments.

22453;4
TO:

FROM:

CON
TEN

TS:

met
ada

ta_
edg

enu
m;I

D=…

ess
enc

e_v
ide

o;I
D=…

ess
enc

e_a
udi

o;I
D=…

Editing

AAF SDK

Effects

AAF SDK

22453;4
TO:

FROM:

CON
TEN

TS:

met
ada

ta_
edg

enu
m;I

D=…

ess
enc

e_v
ide

o;I
D=…

ess
enc

e_a
udi

o;I
D=…

22453;4
TO:

FROM:

CON
TEN

TS:

met
ada

ta_
edg

enu
m;I

D=…

ess
enc

e_v
ide

o;I
D=…

ess
enc

e_a
udi

o;I
D=…

Editing

AAF SDK

Editing
21

AAF SDK

In a “round trip”, any modifications made to a file are recorded in
its metadata

There are many variants to workflow and much attention paid to

this in AAF. For example, a system may send a file to an application

and receive the result straight back. Known as a Roundtrip,

information about alterations made to the file during the trip must

be included in the metadata.

The AAF file is designed for easy updating which is a great benefit

when authoring or editing. It allows new editing information to

be added without having to re-write the whole file. At the end of

the authoring/post phase, the file holds the finished program.

This may not exist as a continuous piece but as sections of original

essence and instructions (in the metadata) for how they should

be manipulated and assembled. For onward applications, like

distribution and transmission, the file is ‘flattened’ (see “Program

Delivery”), resolving the data into a continuous program and

greatly simplifying the metadata. Unflattened files may be useful

as archives for any future reworks.

GXF and MXF file formats receive special mention. GXF was

developed by the Grass Valley Group, also a member of the AAF,

and is the existing file transfer format currently used by the Profile

XP and Vibrint editing systems. MXF is being developed by Pro-

MPEG together with the AAF Association. The data model in MXF

is in fact a subset of AAF—its data structure and names of data

elements are a subset of AAF’s. This maximizes interoperability

between AAF and MXF; an AAF application can open an MXF file

thinking it is an AAF file. It just works!

AAF Overview 3 10 September 2001

Open

AAF has to address the needs of the authoring and post production

industries without restriction. It must be open, not a proprietary,

closed format and have no sigma or tie-ins attached. This has

several implications.

• The AAF software developers kit (SDK) is available as a download
via the website (www.aafassociation.org) to aid speedy AAF-based
developments. Although many commercial companies are involved,
the AAF Association is a nonprofit organization. Manufacturers may
download the SDK for free and modify the source code if required.
They may make products (called “larger works”) and charge money
for the result. These licensing terms are perpetual.

• AAF is not competing with anyone. It is open and anyone can join.
Working with other formats and helping to support the user
workflow is always an aim.

• AAF handles uncompressed video, audio and data. It is also com-
pression agnostic; not knowing or caring about compression, it is
equally well able to handle compressed material. It is format inde-
pendent—the size or composition of the pictures is of no concern.
However, it carries history information describing the details of
compression and picture size.

• AAF is designed not only to facilitate interchange in post but also
the workflow outside. It interfaces well with MXF, GXF and other
formats to support the flow of essence and metadata from content
creation through to playout and interactive services.

• It works cross-platform with any of the commonly used operating
systems: Windows®, Mac OS®, IRIX® and Linux.

Editing and Authoring

Editing and authoring generally involve:

1) opening one or more source content files

2) manipulating or editing the content

3) saving the results

4) moving to a different application or platform to always use the best
tools/people for the job.

Editing and authoring require the use of many applications. Being

able to move from one vendor to another and retain metadata

along the way is very powerful. It is vital to record and carry

forward not only editing and scripting decisions, but also a record

of the steps along the way. These may include information on

the sources, equipment configuration, intermediate data and any

alternatives that may be selected later.

Generally vendors’ applications save the resulting ‘compositional

metadata’ file in their own proprietary format (compositional

metadata is metadata such as EDL information that tells how the

various video and audio elements were combined). This ‘closed’

approach makes the use of multiple applications and later

repurposing of content difficult, as the compositional metadata

is not transferable. This blocks the workflow and metadata has

to be repeatedly re-entered every time when moving between

applications—costing time and money as well as adding room

for error.

For interchange between open systems, applications have to know

how to read the file wrapper header, how to unwrap the contents,

and then how to interpret that content. This creates considerable

challenges when sending a file from one vendor’s system to

another.

Here, the whole point of AAF becomes clear: that editors and

authors should be able to use many different applications on the

same composition. The content and the decisions made in one

application should be visible in another. AAF’s unified interchange

model enables such interoperability, offering distinct advantages

over traditional authoring models:

• Editing/authoring requires a wide range of applications to combine
and modify essence. Although applications may have very different
domains (e.g. audio editing and 3D graphics animation) all applica-
tions should work together to produce the final presentation.

• Applications can extract and display valuable information about
the content in an AAF file (from its wrapper ‘label’) even if they do
not understand the data format. This allows the user to better coor-
dinate the authoring process.

There are many other issues related to completely transparent

interoperability. The significant benefit of AAF is assurance that

compositions output by AAF-compliant applications will be

accessible by the right tool for the job, without risk of being

‘stranded’ by proprietary file format restrictions.

Applications that can use AAF for interchange include:

• Post production systems, including digitization, off-line editing,
graphics, compositing, and rendering systems

• Image manipulation applications, including palletizing tools

• Audio production/engineering systems, including multitrack mix-
ers and samplers

• 3D rendering systems

• Multimedia content creation systems, including scripting, catalog-
ing, titling, logging and content repackaging applications

• Image and sound recording equipment, including cameras and
camcorders, scanners, telecines, sound dubbers, disk recorders, and
data recorders

• Content Management Systems, Digital Asset Management Systems
and other content and asset tracking business applications

• Television studio systems, including picture and sound editors, servers,
effects processors, archiving and broadcast automation systems

AAF Overview 4 10 September 2001

Interchange

AAF allows interchange of a broad range of essence formats and

metadata. Even so, applications may have interchange restrictions

due to other considerations. So, there are different kinds of

interchange possible:

• Interchange of a limited set of essence

• Interchange of a broad set of essence with some related metadata

• Interchange of essence and a rich set of metadata, including com-
positions but having limited support for some essence types

• Full interchange of all essence types and all metadata described in
the AAF specification, preserving any additional private informa-
tion stored in the AAF file

AAF incorporates existing multimedia data types such as video,

audio, still image, text, and graphics. Applications can store

application-specific data in an AAF file, and can use AAF as the

application’s native file format. The AAF SDK has codecs built in

for some commonly used formats, such as CDCI and RGBA

images, WAV and AIFC audio and provides an extension

framework for any new or proprietary formats. This allows the

SDK to view the essence content of a file. It is important to note

that AAF can encapsulate any essence data type, but seeing or

hearing it via the SDK may require adding a codec. In any case,

AAF can be used to transfer any essence stream without restriction.

Compositional Information

AAF allows users to move this information along with essence,

formatting and storing the information in a standardized way.

Media Derivation

AAF can describe the process by which several separate pieces

of video and audio were combined to produce another. AAF can

track the origin of all of the original components (sometimes

called History Information, or derivation chain). For example, when

an AAF file contains audio and video originated from film, it may

contain descriptive information about the film source, including

edgecode, and in- and out-points from an intermediate videotape.

This is very useful when repurposing the material for a new cut

or production.

Derivation information can also describe the creation of computer-

generated material. If a composition was generated from a 3D

animation and still images, the AAF file can contain the

information needed to go back to the original sources and make

changes without having to regenerate the entire composition.

V3
V2
V1
A1
A2

V3
V2
V1
A1
A2

V3
V2
V1
A1
A2

V3
V2
V1
A1
A2

Off-Line Editor

Effects

Play-To-Air (MXF)

Archive (AAF)

On-Line Editor

Audioaudio
sequence

multiple
tracks

complex fx
previz

AAF file

AAF file

22453;4
TO:

FROM:

CON
TEN

TS:

met
ada

ta_
edg

enu
m;I

D=…

ess
enc

e_v
ide

o;I
D=…

ess
enc

e_a
udi

o;I
D=…

22453;4
TO:

FROM:

CON
TEN

TS:

met
ada

ta_
edg

enu
m;I

D=…

ess
enc

e_v
ide

o;I
D=…

ess
enc

e_a
udi

o;I
D=…

AAF enhances workflow by allowing specific parts of a composition to be sent to an appropriate application for treatment and then
gathered back into the whole.

AAF Overview 5 10 September 2001

Flexibility and Efficiency

AAF is not designed as a streaming media format but as a file

interchange format. It can also be used for native capture and

playback of essence with flexible storage for large data objects.

For example, it allows sections of data to be broken into pieces

for efficient storage and offers references to externally stored

essence. AAF also allows in-place editing; where the metadata

changes but the entire file is not rewritten (See “AAF File Format”).

Templates

It is AAF’s templates that provide filters to control which parts of

the essence and metadata are passed on to other applications.

For example, there are typically different requirements between

distribution and an archive repository. The former needs the

conformed (flattened) essence with only basic metadata (e.g.

program title), the latter may require any or all the history of

material origination, ownership and detail of editing processes

used to date.

Extensibility

AAF defines mechanisms for extending the storage of metadata

and essence so it can include new types as they come into

common use. Effects extensibility allows tool vendors to develop

a rich library of new and engaging effects, or processes, for use

with AAF files. When an effect or codec is referenced in an AAF

file, binary plug-in modules allow AAF-compliant applications to

determine if that facility is available and, if not, to find it and load

it on demand.

AAF files can be distilled down to a distribution or other formats using templates which, to varying degrees, filter out superfluous
metadata and ‘flatten’ essence. AAF templates allow extensibility as the introduction of a new format to the AAF specification is
accomplished by simply writing and publishing a corresponding template.

Sub-Master

AAF file

Film

Other
Sub-Masters

Other
Templates

Film
Template

Sub-Master

Sub-Master

MXFMXF
Template

GXFGXF
Template

22453;4
TO:

FROM:

CON
TEN

TS:

met
ada

ta_
edg

enu
m;I

D=…

ess
enc

e_v
ide

o;I
D=…

ess
enc

e_a
udi

o;I
D=…

Editing

AAF SDK

Effects

AAF SDK

AAF Overview 6 10 September 2001

AAF File Format

AAF is a wrapper for essence and metadata providing a single

model for the interchange of data. Essence types may include

video, audio, still images, graphics, text, MIDI files and animation.

Metadata types may include compositional information, event

triggers, timecode/edgecode and references to original ownership

and past processes. AAF files preserve their original and existing

metadata, as well as adding new authoring/editing information.

AAF supports efficient playback and incremental updates and is

scaleable for both high-end professional and consumer-level

applications. The AAF file format includes:

• Information about the original sources so that edited essence can
be traced back to originals

• References to external essence files, including files located on re-
mote networks

• An extensible video and audio effects architecture with a rich set of
built-in base-level effects

• Open, cross-platform support with the SDK working with any of
the commonly used operating systems, Windows®, Mac OS®, IRIX®

and Linux.

Full authoring information

AAF has very rich metadata capabilities. It can describe complex

edits, compositing, effects and other functions used in post

production. It can contain a finished program but, more usually,

it holds all the source elements to render a finished program.

External references

A very powerful element of AAF is its ability to carry external

references. For example, an AAF file contains three audio clips,

two video clips and the “EDL” in metadata form, instructing what

to do with the clips to create the edited result. In addition, this

AAF file might contain a reference to a closed-caption file resident

in a separate system. So, the AAF file can contain all the

information about a post production project, regardless of how

large the project is or where project elements are stored.

Easily editable

AAF’s use of Structured Storage supports its full feature capability.

This means that the alterations and additions involved in the

authoring/editing process are easily and quickly added to the

file without having to entirely rewrite it (similar to FAT works,

Structured Storage files can be expanded without having to be

contiguous).

Compression agnostic

AAF is compression agnostic. It can be used with a number of

compression formats as well as supporting the uncompressed

operation which is much favored in post production.

Note: AAF is targeted at the specific needs of authoring and post. It is less suit-
able for store-and-forward or broadcast playout, where other formats such as
GXF and MXF are better suited to these applications (see “Program Delivery”).

Essence Issues

Today, editing and authoring often involve the use of several

types of content together while managing interactions and

relationships between them. The content types are generally

motion picture film/video, audio, still images, animation, 3D

geometry and text. The sheer number of content file formats,

each with its own strength (preferred compression codec,

optimized file size, preferred color resolution, etc.), requires many

format-to-format conversions to produce an end product.

AAF’s strengths are in the interchange of essence and metadata

and working cross-platform. This allows the users’ creative energies

to be focused on their prime tasks rather than on interchange issues.

It also means software development can focus on improvements

to the authoring application’s feature set.

AAF Overview 7 10 September 2001

video, MPEG-2 Transport Stream, QuickTime 4, Advanced
Streaming Format (ASF), General eXchange Format (GXF), and
the Material eXchange Format (MXF). These do not need AAF’s
rich set of metadata which was useful during authoring. So, by
conforming and saving the content without the authoring
metadata—stripping out the metadata to ‘flatten’ the file—AAF
optimizes completed compositions for delivery.

Program Delivery

In contrast to authoring systems, delivery systems are used to
transport finished programs. Technically, delivery has at least two
major considerations: the target playback hardware (TV, audio
equipment, PC) and the distribution vehicle (film, broadcast TV,
DVD, network, etc.).

The content created using AAF in authoring will be delivered by
many different vehicles using data formats such as baseband

About GXF

The Grass Valley Group (www.grassvalleygroup.com)
designed the General eXchange Format (GXF) to support on-
air and news operations and other related broadcast
applications. It is based on an extensible content (essence)
encoding concept similar to, but not identical to, the SMPTE’s
KLV scheme (a method for wrapping data for transport over
networks) used by AAF. GXF is used in many broadcast
facilities for applications including the transfer of material on
data networks and archiving onto data tape and other storage
devices.

GVG is examining requirements for the transfer of a limited
set of metadata from the authoring system to the distribution
environment. Some metadata may be transferred from the
authoring process but additional new information, which
relates specifically to the finished program, would be inserted
when the finished program is published. Additionally GVG
is looking at requirements for a driver that would allow
authors to publish GXF streams from AAF compliant
applications.

GXF supports cuts-only video edits along with audio fade in/
out but not the rich effects or editing of complex packages. It
fits very well with on-air applications with support for MPEG
(elementary streams), DVCPRO, JPEG video, uncompressed
AC3 and Dolby E audio. At least seven vendors support GXF
today.

About MXF

The Media Exchange Format, MXF, is supported by the many
members of the Pro-MPEG Forum (www.pro-mpeg.org) and
is aimed at the exchange of program material between file
servers. It is also a format for tape streamers and digital
archives. It usually contains one complete sequence but this
may comprise a sequence of clips and program segments.
There are six operational patterns: Simple, Compiled,
Compound, Uncompiled Simple, Uncompiled Compound and
Metadata-only.

As MXF is derived from the AAF data model it integrates closely
with AAF files as well as stream formats. Bridging file and
streaming transfers MXF helps move material between AAF
file-based post production and streaming program replay using
standard networks. This setup extends the reliable essence and
metadata pathways of both formats to reach from content
creation to playout.

The MXF body carries the content. It can include MPEG, DV
and uncompressed video and contains an interleaved
sequence of picture frames, each with audio and data essence
plus frame-based metadata. MXF has been submitted to the
SMPTE as a proposed standard and is fully SMPTE KLV
compliant.

AAF Overview 8 10 September 2001

Developers – Getting Started

Downloading the SDK

The AAF Software Development Kit is available for download

from Source Forge (http://www.sourceforge.com). Developers

must register at Source Forge to access the AAF project site, and

be familiar with CVS.

Please refer to the Source Forge site documentation for information

regarding CVS. An all platforms CVS client is available at

http://www.cvshome.org.

One you have a Source Forge login, and a CVS client, the following

command will download the most recent version of the SDK:

cvs -z3 -d:pserver:anonymous@cvs.aaf.
sourceforge.net:/cvsroot/aaf co AAF

Follow the build instructions in AAF\doc\AAFProjectFAQ.html.

Software Architecture

The SDK is composed of three primary components: a COM

interface, a reference implementation of the AAF object model,

and Microsoft’s structured storage as the persistent object store.

This is illustrated below:

First Program

The following is a walk through of a very simple AAF program.

Several important details are omitted for the sake of clarity.

Notable, there is not error checking, and the COM interfaces are

not correctly released.

First, we need several include files. AAF.h declares the COM

interface, AAFStoredObjectIDs.h declares unique

identifiers for AAF stored objects. This file is required to create

new object instances.

#include <AAF.h>

#include <AAFStoredObjectIDs.h>

Before accessing any COM interfaces, the AFF COM module must

be loaded:

int main(int argc, char** argv)

{

 // Load the default COM implementation

 // library. Passing null will cause the

 // default module to be loaded.

 AAFLoad(“AAFCOAPI.dll”);

Next, a file needs to be opened or created. Here we create a new

file. All new files require a product identification:

 // A product identification structure is

 // required to create a new file. This

 // includes a product UUID. Need a UUID?

 // Try Microsoft’s UUIDGEN tool. Here

 // a newly generated UUID to use:

 // 89aa595e-51ec-4e65-8ce8-37818def78f3

 aafProductIdentification_t ident =

 { L”AAF Association”, // Company Name

 L”First File”, // Product Name,

 L”2.71828182818", // Product Version

 {0x89aa595e, 0x51ec, 0x8ce8,

 {0x8c, 0xe8, 0x37, 0x81, 0x8d, 0xef,
 0x78, 0xf3}} // Product UUID

 };

 // Create a new file.

 IAAFFile* file;

 AAFFileOpenNewModify(L”./my_first_aaf_file.aaf”,
 0, &ident, &file);

AAFFileOpenNewModify returns a pointer to a COM

interface. All objects in an AAF file are contained by the header,

hence, the first object we get an interface for is the header. The

dictionary is also required for this example, so we get an interface

for that object as well:

Application developers need only be concerned with the COM

api. The api is documented in the source code (see the AAF.idl

file) and also at: http://aaf.sourceforge.net/docs/com-api/
contentsf.html. Developers should also review the AAF

Developers’ Guide, and the AAF Specification. Both are available

at http://www.aafassociation.org. These documents, the

specification in particular, describe the AAF object model. The

COM interface is the only means which developers access the

objects described in the specification.

The SDK includes a minimal implementation of COM for use on

non-Microsoft platforms. Structured Storage binaries are also

included for Irix, Linux, Macintosh, and, of course, Windows 2000

(NT). There is no Structured Storage source code in the SDK.

AAF SDK

Structured Storage

Reference Implementation

COM Interface

OS and File System

Application

AAF Overview 9 10 September 2001

 // We will need the header.

 IAAFHeader* header;

 file->GetHeader(&header);

 // The dictionary is required to create a

 // new object.

 IAAFDictionary* dictionary;

 header->GetDictionary(&dictionary);

Next, we want to create an instance of a new MasterMob object.

We can use the dictionary to do this. We must provide the unique

ID of the object we wish to create, and the interface we wish to

create. All objects must be initialized after being created, and

before being used:

 // Now, use the dictionary to create a

 // MasterMob and initialize it. You must

 // always initialize a new created object.

 IAAFMasterMob* masterMob;

 dictionary->CreateInstance(

 AUID_AAFMasterMob, // The object ID

 IID_IAAFMasterMob, // The interface ID,

 reinterpret_cast<IUnknown**>(&masterMob)
);

 masterMob->Initialize();

We want to name the mob. Look at the documentation for

IAAFMasterMob. You will not find a “SetName” method.

However, you will find that COM objects that implement

IAAFMasterMob also implement IAAFMob. We must

use the standard COM “QueryInterface()” method to

access the IAAFMob interface:

 // Name this mob “My First Mob”

 // But wait! We IAAFMasterMob has no

 // method to set the mob name. To do that

 // we require an IAAFMob interface.

 // Objects that implement IAAFMasterMob

 // also implement IAAFMob.

 IAAFMob* mob;

 masterMob->QueryInterface(IID_IAAFMob,

 reinterpret_cast<void**>(&mob));

 mob->SetName(L”First Mob”);

The new MasterMob object will not be saved until we add it to

the header, and save the file:

 // Add mob the file (via the header)

 header->AddMob(mob);

 // Save and close the file.

 file->Save();

 file->Close();

Finally, it is good practice to unload the COM module when

finished:

 // Unload the COM module.

 AAFUnload();

 return 0;

}

That’s it. That will create an AAF file with a single MasterMob

named “First Mob”. Here is a dump of the file to illustrate this:

Object Header

Prop ByteOrder

Value IAAFTypeDefInt: (Int16) 18761 0x4949

Prop LastModified

Value IAAFTypeDefRecord: 2 members

Prop Content

Value IAAFTypeDefStrongObjRef: to object of
 class ContentStorage

Object ContentStorage

Prop Mobs

Value IAAFTypeDefSet:

Value IAAFTypeDefStrongObjRef: to
 object of class MasterMob

Object MasterMob

Prop MobID

Value IAAFTypeDefRecord: 6 members

Prop Name

Value IAAFTypeDefString: First Mob

Prop Slots

Value IAAFTypeDefVariableArray: 0
 elements of type

 IAAFTypeDefStrongObjRef

Prop LastModified

Value IAAFTypeDefRecord: 2 members

Prop CreationTime

Value IAAFTypeDefRecord: 2 members

Prop Dictionary

Prop Version

Prop IdentificationList

This dump shows the objects in the file, the properties of each

object, and the value of each property (Dictionary, Version, and

IdentificationList excluded). Our new Master Mob is the first,

and only, Mob object of the Mobs set contained by the

ContentStorage object.

AAF Overview 10 10 September 2001

Example Programs

The SDK includes a number of example programs. These are a

set of examples that came into existence during the development

of the SDK itself. To complement these examples, the AAF

Association is producing a set of new example programs. This

new code aims to provide a set of examples that are mildly

representative of the type of processing that must be performed

by real applications. They are built upon a small library of reusable

C++ classes that are implemented using modern C++ coding

practices. They also hide many of the distracting details of

accessing AAF objects via multiple COM interfaces.

The new examples walk a developer through the process of

creating a file with metadata only, metadata plus audio and

video essence, and finally an example that builds a composition

from these objects. Code fragments would not be meaningful in

the narrow context of this document, however, it is informative

to examine a dump of the full composition created by the example

code.

The dump shows all the objects types (and their containment

relat ionships) required to build a composit ion. The

CompositionMob ties it all together to create a multi-track audio/

video composition with a transition effect. Understanding how

to create, or simply read, even a simple file such as this requires

careful study of the AAF Object Specification, study of example

code, and plenty of experimentation and practice with the SDK.

The examples programs also include the dump utility used to

generate the output presented here. The dump utility itself is a

good example of how to implement processing operations that

must pass over all objects in an AAF file.

Still, these examples only scratch the surface of what can be

accomplished with the SDK. Expect to see more.

This new example code is not available on SourceForge, but is

available to AAF members. Please contact the AAF Organization

to access the code.

Example Composition Dump
Object Header

Object ContentStorage

Object SourceMob

Object TimelineMobSlot

Object SourceClip

Object CDCIDescriptor

Object MasterMob

Object TimelineMobSlot

Object SourceClip

Object TaggedValue

Object TaggedValue

Object KLVData

Object KLVData

.

. (three more MasterMobs)

.

Object SourceMob

Object TimelineMobSlot

Object SourceClip

Object WAVEDescriptor

Object SourceMob

Object TimelineMobSlot

Object SourceClip

Object CDCIDescriptor

.

. (one more of each of the above SourceMobs)

.

Object CompositionMob

Object TimelineMobSlot

Object Sequence

Object SourceClip

Object Transition

Object OperationGroup

Object SourceClip

Object TimelineMobSlot

Object Sequence

Object SourceClip

Object Transition

Object OperationGroup

Object SourceClip

Object EssenceData

Object EssenceData

Object EssenceData

Object EssenceData

AAF Overview 11 10 September 2001

Membership
Principal Members
� Avid

� British Broadcasting
Corporation

� Cable News Network

� Discreet

� Fox News Corp.

� Liberty Livewire

� Microsoft

� National Imagery and
Mapping Agency

� Panasonic

� Pinnacle

� Quantel

� Sony

� Turner Entertainment
Networks

General Members
� AIST—Animated Image

Systems Technology GmbH

� Ascential Software

� EMC

� Encoda Systems

� Grass Valley Group

� Leitch

� Matrox

� NL Technology, LLC

� Omneon

� Pandora

� Philips

� Post Impressions

� Smoke & Mirrors

� Snell & Wilcox

� Sonic Foundry

� tecmath

� Warner Bros.

Associate Members
� Bulldog

� eMotion

� Front Porch Digital

� Dutch Broadcasting Services
Corporation (NOB)

Supporters
�� International Digital

Cinema Festival
Copyright © 1998–2001 AAF Association Inc. All rights reserved. Product specifications are subject to change without notice. The software described in this
document is furnished under a license agreement, and may be used or copied only in accordance with the terms of the license agreement. Acrobat and PDF are
trademarks of Adobe Systems Inc. QuickTime and Mac OS are trademarks of Apple Computer, Inc., registered in the United States and other countries. Microsoft,
Windows, and ASF are either registered trademarks or trademarks of Microsoft Corporation in the United States and other countries. IRIX is a registered trademark
of SGI Inc. UNIX is a registered trademark of The Open Group. All other trademarks contained herein are the property of their respective owners.

The AAF Association
Incorporated in January 2000, the AAF Association, Inc. is a broadly-based trade association
promoting the development and adoption of AAF technology throughout the media industry.
With membership embracing many major players in the industry, it intends to help deliver
the full benefits of digital media to content creators including those working in film, television,
Internet and post production. Membership in the AAF Association is open at various levels to
any interested parties. To learn more, please contact us at: info@aafassociation.org

Comments from some members of the AAF Association

“As post production moves away from its reliance on
D1 tape and towards networked file systems containing
digitised multi format video and film, there is a great
need for common interchange and archiving formats
supported by all manufacturers. The AAF provides the
common framework which we hope all manufacturers
will adopt to allow for the interchange of media within
the post production process.”

John Bennett
Head of Software development,

MovingPictureCompany, London

“AAF provides a way for us to move metadata from one
system to another without re-keying. The beauty of AAF
is that the appropriate metadata is joined at the hip with
the media though its workflow and life cycle.

“Our future purchase decisions will be based on AAF
compatibility. In other words, we are more likely to buy
products that include AAF. It is worth the effort of
manufacturers to devote resources to this worthwhile
initiative.”

Suzanne Donino
Senior Vice President

Turner Broadcasting Systems, Inc.

“As a leader in the communications industry, Liberty
Livewire is a highly integrated media company, offering
a wide range of services in the production, post
production, audio, and broadcast market segments.
Livewire seeks to integrate these services by optimizing
disparate methodologies and streamlining the
interchange of metadata and program content.

“Many of our current business processes require onerous
reformatting or re-keying of data as content is
manufactured and distributed. File and metadata
interchange among production and post production
systems is difficult, time-consuming, and unduly
expensive. This inefficiency costs Liberty and its clients
both time and money.

“As a founding member of the AAF Association, Liberty
Livewire supports the work of the AAF in establishing a
common file exchange format for the production and post
production environments. We look forward to the time
when AAF is supported in products, and encourage all
manufacturers and users to embrace the AAF open source
interchange format. We anticipate that AAF will enhance
the creative experience by simplifying interchange,
enabling editors, designers, and others to do their best
work.”

Gavin Schutz
Executive Vice-President,

Chief Technology Officer, Liberty Livewire

“The BBC is committed to improving the links between
different stages of the programme-making process. With
solid industrial backing and the AAF Association to guide
its development, the AAF format is on course to deliver
the dream of seamless transfer of content between
systems.”

Andrew Oliphant
BBC Research and Development

“CNN/Turner Broadcasting needs standards to describe
complex media and enable interchange between different
systems. We look to the AAF Association to move these
efforts forward. Without this work, vendors are faced with
developing custom integration that is costly, slow, and
not extensible.”

Gordon Castle
VP Research and Development, CNN

“The Fox Group, in all aspects of its enveavors, seeks to
produce content using the latest technology and
techniques, which are, at the same time, cost-effective.
To that end, we feel that a common media file format,
both for storage, transmission and archiving, is highly
desirable and would meet that goal.

“AAF and MXF hold the promise of a common file
interchange format, tailored to both file transfer and file
streaming. Rich in metadata, these formats will allow Fox
to produce highly sophisticated projects using multiple
platforms without the inefficiency of error prone “cross
conversions”. Further, we will be able to more easily mine
our archive in the future for use in other venues and
markets as well as for re-use within new projects.

“We encourage the work undertaken by AAF and the Pro-
MPEG forum in making these formats open source and
available to multiple vendors.”

Andy Setos
Executive Vice President,

News Technology Group, The Fox Group

“The AAF Association is delivering on its promise of
enabling interoperability for the post-production
environment. The release of AAF SDK v1.0 in April 2001
gives manufacturers the practical means of incorporating
the format in their products, and we encourage them to
do so. In the year ahead, we look forward to working
with manufacturers on implementing and using AAF-
based systems and with the AAF Association on
enhancing the AAF technology yet further.”

Phil Tudor
BBC Research & Development

